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OBJECTIVE To examine the effects of neostigmine, an acetylcholinesterase inhibitor that has been used to
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treat impaired bladder emptying on diabetic rat urinary bladder smooth muscle.

METHODS Rat urinary detrusor muscle strips were suspended in organ baths containing Krebs’ solution for
isometric tension recording. Streptozotocin-diabetic (12 weeks) bladder tissue activity compared
with control was assessed by using electrical field stimulation (EFS) in the presence and absence
of the cholinesterase inhibitor, neostigmine.
RESULTS EFS-induced contractions; a major part of it is cholinergic in origin. Neostigmine significantly

enhanced EFS-induced contractions in diabetic strips than control at all frequencies. Neostig-
mine caused concentration-dependent contractions of control and diabetic bladder tissues, which
were completely abolished by atropine. Carbachol-induced bladder contraction was significantly
reduced in diabetes.
CONCLUSION In diabetes mellitus, cholinesterase modulation (increase) may play a role in the development of

inadequate bladder contraction, seen in later stage diabetic bladder dysfunction. UROLOGY -:
-e-, 2014. � 2014 Elsevier Inc.
mpaired bladder contraction is a common problem
among diabetic patients. Excitatory cholinergic and
Ipurinergic systems are involved in the maintenance

of bladder continence and micturition. Acetylcholine
and adenosine triphosphate (ATP) were found to provide
all excitatory input in the rat bladder.1 It was found that
electrical nerve stimulation caused co-release of acetyl-
choline and ATP from the same source in the rat
bladder.1 It is known that reflex activation of cholinergic
nerve is responsible for bladder emptying.2 Voiding of the
bladder is the result of mainly muscarinic receptor acti-
vation.3 Acetylcholinesterase (AChE) is an enzyme that
specially cleaves acetylcholine to acetate and choline and
terminates its actions. Inhibitors of AChE indirectly
provide a cholinergic action by prolonging the lifetime of
the acetylcholine produced. Neostigmine combines with
the enzyme making it very slow to be hydrolyzed, taking
minutes rather than microseconds. The anticholines-
terase drug is hydrolyzed at a negligible rate compared
with acetylcholine. Pharmacotherapy using muscarinic
agonists and AChE inhibitors such as neostigmine has
been used to treat impaired bladder emptying.4,5 Neu-
ropathies of the autonomic nervous system as a compli-
cation of diabetes mellitus have been well known.6,7 The
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most common complication of diabetes is diabetic cyst-
opathy and diabetic bladder dysfunction.8-10

The aim of the study was to examine the effects of
AChE inhibitor, neostigmine, on diabetic rat urinary
bladder smooth muscle.

METHODS

Animals
Forty-eight adult male Sprague-Dawley rats weighing approxi-
mately 200 g were housed individually on a 12-hour light-dark
cycle (lights on from 6 AM to 6 PM). The ambient tempera-
ture was kept at 21�C, and the rats had free access to standard
laboratory food and tap water.

Induction of Diabetes
Diabetes was induced in 24 rats by intravenous injection of
streptozotocin (55 mg/kg body weight) dissolved in 0.05-M so-
dium citrate, pH 4.5; control rats received buffer alone by the
same route. The rats were kept for 12 weeks, and induction of
diabetes was ascertained by the determination of blood glucose
concentrations.

Preparation of Bladder Strips
Rats were fasted for 6 hours before sacrificing by decapitation.
Blood was collected into heparinized tubes, centrifuged at 3000�
g for 15 minutes, and the plasma used for the measurement of
glucose concentration at death. The urinary bladder was removed
and placed in Krebs’ solution of the following composition (mM):
NaCl, 118; KCl, 5.9; MgSO4, 1.2; CaCl2, 2; KH2PO4, 1.2;
NaHCO3, 26; and glucose, 11.1 at pH 7.4. The bladder was cut
longitudinally into equal strips 10 � 5 mm from control rats and
diabetic rats, which were suspended in10-mL organ baths
ttp://dx.doi.org/10.1016/j.urology.2014.08.019
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Figure 1. (A) Effect of diabetes on frequency-induced contraction to electrical field stimulation (50 V, 0.5 ms, 10 s) of bladder
strips from control (�) and diabetic rats for 12 weeks (-). Results are means � standard error of the mean (SEM) of 6 ex-
periments for each. Significant difference between normal and diabetic groups (*P <.05). (B) Effect of atropine (1 mM) on
frequency-induced contraction to electrical field stimulation (50 V, 0.5 ms, 10 s) of bladder strips from control (�) and after
atropine (-). Results are means � SEM of 4 experiments for each. Significant difference between the groups (*P <.05). (C)
Effect of atropine (1 mM) on frequency-induced contraction to electrical field stimulation (50 V, 0.5 ms, 10 s) of bladder strips
from diabetic rats for 12 weeks (�) and after atropine (-). Results are means � SEM of 4 experiments for each. Significant
difference between the groups (*P <.05).
containing Krebs’ solution, maintained at 37�C, and gassed with
95% O2 and 5% CO2. Tension was continuously recorded using a
computerized automated isometric transducer system (Schuler
organ bath type 809; Hugo Sachs Elektronik) connected to a
Gould recorder (Gould Inc). The strips were initially loaded to a
tension of 1 g and allowed to equilibrate for 60 minutes during
which time they were washed twice. At the end of each experi-
ment, the muscle was dried with filter paper and weighed, and
then responses were calculated as mg � mg�1 tissue weight. This
method was used in our previous researches.11-13

Electrical Field Stimulation Studies
For electrical field stimulation (EFS), bladder strips were passed
through a pair of platinum ring electrodes. The electrodes were
connected to a Grass S8800 stimulator (Astro-Med), delivering
square wave pulses. Optimum electrical stimulations parameters,
previously determined (50 V, 0.5 ms for 10 s using frequency
ranging from 0.1-40 Hz), were used in that study.

Frequency-response curves were elicited using the previous
parameters every 3 minutes.
1.e2
Drugs. Acetylcholine hydrochloride, neostigmine bromide,
carbamylcholine chloride (carbachol), and atropine sulfate were
obtained from Sigma Chemicals, St. Louis, MO. All drugs were
dissolved in distilled water.

Calculation. Data are presented as mean � standard error of
the mean of (n) experiments. Where necessary, differences be-
tween 2 mean values were compared using the Student t test,
paired or unpaired as appropriate. Where multiple comparisons
were necessary, 1-way analysis of variance was used followed by
the Student-Newman-Keuls test. The difference was assumed to
be significant at P <.05.
RESULTS
In our study, diabetic bladders weighed more than
the normal rat bladders. The average bladder weights
of control and diabetic for 12 weeks were 0.1020 � 0.009
and 0.2414 � 0.03 g, respectively (n ¼ 12; ***P >.001).
UROLOGY - (-), 2014
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Figure 2. (A) Effect of diabetes on neostigmine concentration-contraction curves of bladder strips from control (�) and dia-
betic rats for 12 weeks (-). Results are means � standard error of the mean (SEM) of 4 experiments for each. Significant
difference between normal and diabetic groups (*P <.05). (B) Effect of neostigmine (10 mM) on frequency-induced
contraction to electrical field stimulation (50 V, 0.5 ms, 10 s) of bladder strips from control (�) and after neostigmine (-).
Results are means � SEM of 4 experiments for each. Significant difference between the groups (*P <.05). (C) Effect of
neostigmine (10 mM) on frequency-induced contraction to electrical field stimulation (50 V, 0.5 ms, 10 s) of bladder strips
from diabetic rats for 12 weeks (�) and after neostigmine (-). Results are means � SEM of 4 experiments. Significant dif-
ference between the groups (*P <.05).
EFS-induced Contraction

Preparations Under Resting Conditions. EFS (0.1-
40 Hz) of the control and diabetic bladder preparations
elicited frequency-dependent contractions as shown in
Figure 1A. The contractions were rapid at onset and
stopped immediately when stimulation ceased. These
contractions were abolished by tetrodotoxin (1 mM; n ¼
8; data not shown) confirming that they were neuro-
genically mediated. EFS-induced contractions were also
inhibited by atropine (1 mM) in the 2 preparations, also
confirming that the major part of excitatory innervation
in rat bladder smooth muscle is cholinergic in origin as
shown in Figure 1B,C.

EFS-induced contractions last 10 seconds, whereas in
the presence of atropine, they last 4 seconds. The peak of
contraction reached after 10 seconds, and the contraction
only stopped when the stimulation was ceased. No
UROLOGY - (-), 2014
relaxant responses to EFS were observed in the presence
of atropine.

Effect of Neostigmine Under Resting Conditions.
Neostigmine (0.1-100 mM), an AChE inhibitor caused
concentration-dependent contractions of bladder strips
from normal and diabetic rats. Neostigmine-induced
bladder contraction was significantly reduced in diabetic
strips (Fig. 2A). The increase of the basal tone by
neostigmine was completely abolished by atropine, indi-
cating that the effect is cholinergic.

Effect of Neostigmine EFS-induced Contraction.
Neostigmine 10 mM produced leftward shifts of the EFS-
induced contraction in urinary bladder strips from
normal and diabetic rats. Pretreatment of the preparations
with neostigmine (10 mM) markedly augmented the
EFS-induced contractions as shown in Figure 2B,C.
1.e3
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Figure 3. Percentage of frequency-induced contraction to
Neostigmine significantly affected both urinary bladder
strips from normal and diabetic rats; however, the
enhancement of neostigmine on EFS in diabetic strips
were higher than in control strips for all the frequencies.
The percentage of frequency-induced contraction to EFS
enhancement of bladder strips from control and diabetic
rats due to neostigmine is shown in Figure 3. These results
confirm that AChE is more effective in diabetic bladder
than control bladder.

Carbachol-induced Contraction. Carbachol 10 nM-to-
100 mMeinduced concentration-dependent contractions
of bladder strips are shown in Figure 4. Dose-response
curves for carbachol were obtained in control and dia-
betic rats. Carbachol-induced bladder contraction was
significantly reduced after the induction of diabetes.
electrical field stimulation (50 V, 0.5 ms, 10 s) enhance-
ment of bladder strips from control and diabetic rats in the
presence of neostigmine (10 mM). Results are mean �
standard error of the mean of 4 experiments (*P <.05).
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Figure 4. Effect of diabetes on carbachol concentration-
contraction curves of bladder strips from control (�) and
diabetic rats for 12 weeks (-). Results are means � stan-
dard error of the mean of 4 experiments. Significant differ-
ence between normal and diabetic groups (*P <.05).
COMMENT
Our results demonstrated that the major part of the
endogenous agonist released by EFS is cholinergic in
origin in the control and diabetic bladders. Previous
studies proved that in rat bladder, EFS caused co-release
of acetylcholine and ATP from the same source, and
acetylcholine and ATP were provided all excitatory
input.1,2,14 In addition, our study showed that cholinergic
component of the nerve-mediated detrusor contraction
decreased in the diabetic rat bladder than control bladder.
These results are supported by previous studies.7,15,16

Lincoln et al17 and Wahba et al18 showed significant
increases in the activities of AChE in the bladder after
2 weeks of diabetes. They suggested that cholinergic
nerve activity was increased in the urinary bladder during
diabetes by using histochemistry and biochemical assays.

Because muscarinic receptors are physiologically most
important for the mechanism to elicit contraction of the
urinary bladder, pharmacotherapy using cholinergic ago-
nists and AChE inhibitor neostigmine is used to treat
diabetes complications in bladder. Our study showed that
the enhancement of neostigmine on EFS in diabetic strips
was higher than in control strips indicating that AChE
enzyme is more active in diabetic bladder than in control.
This result also reveals that although neostigmine
enhanced endogenous acetylcholine-induced contrac-
tions through inhibition of AChE enzyme, its effect on
basal tone was clearly different. Neostigmine-induced
contraction, which was completely abolished with atro-
pine, indicates that neostigmine may act directly on the
muscarinic receptors.19-20 The direct effect of neostig-
mine was shown in different body tissues such as tra-
chealis muscle,21 sympathetic neurons,22 Aplysia
neurons,23 and ileum.24

Carbachol also binds directly to muscarinic receptors,
but it is not decomposed by AChE like the acetylcholine,
and its effect is long-lasting.25 Carbachol-induced
contraction is more in the control than the diabetic
bladder. This result proves that there is dysfunction in
muscarinic receptors during diabetes.
1.e4
The lower urinary tract complication of diabetes mel-
litus is diabetic cystopathy or diabetic bladder dysfunc-
tion. Neurogenic changes occur after the onset of
diabetes.16 Previous studies of the effect of diabetes on
detrusor contractility showed decrease force production in
the diabetic rat. Changes in muscarinic receptor popula-
tion are also linked to altered contractility.26-28

Therefore, we can conclude that diabetes mellitus de-
creases the effect of muscarinic receptors and increased
the presence and/or activity of cholinesterase in
streptozotocin-diabetic bladder tissue compared with
control. In diabetes mellitus, cholinesterase modulation
(increase) may play a role in the development of inade-
quate bladder contraction seen in chronic diabetic
bladder dysfunction. Both effects have great impact on
the cholinergic system in diabetic bladder. These results
UROLOGY - (-), 2014



clarify the need for new drugs that have dual effects to
stimulate muscarinic receptors and at the same time
inhibit the AChE enzyme.
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